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In 1999, Faraoni wrote a simple second-order linear differential equation for FRW cos-
mologies with barotropic fluids. His results have been extended by Rosu, who employed
techniques belonging to nonrelativistic supersymmetry to obtain time-dependent effec-
tive adiabatic indices. Further extensions are presented here using the known connection
between the linear second-order differential equations and Dirac-like equations in the
same supersymmetric context. These extensions are equivalent to adding an imaginary
part to the effective adiabatic index, which is proportional to the mass parameter of the
Dirac spinor. The natural physical interpretation of the imaginary part is related to the
particular dissipation and instabilities of the effective barotropic FRW hydrodynamics
that are introduced by means of this supersymmetric scheme.
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1. INTRODUCTION

The barotropic FRW cosmologies obey the following set of differential
equations:
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= −4πG

3
(ρ + 3p), (1)(
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= 8πGρ

3
− κ

a2
, (2)

p = (γ − 1)ρ , (3)

wherea is the scale factor of the universe,ρ andp are the energy density and the
pressure, respectively, of the perfect fluid of which a classical universe is usually
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assumed to be made of,κ = 0,±1 is the curvature index of the flat, closed, open
universe, respectively, andγ is the constant adiabatic index of the cosmological
fluid. Recently, Faraoni (1999) proposed the “Riccati route” of solving the system
of Eqs. (1)–(3) and Rosu used Faraoni’s approach to introduce a supersymmetric
class of cosmological fluids possessing time-dependent adiabatic indices (Rosu,
2000; Nowakowski and Rosu, 2002). It was claimed that these fluids can provide
a simple explanation for a currently accelerating universe (Perlmutteret al., 1997,
1999).

In this work, we review the supersymmetric factorization methods for
barotropic FRW cosmologies in Section 2. Next, in Section 3, we present corre-
sponding Dirac-like (first-order) coupled differential equations and their associated
second-order differential equations and discuss them in a formal way. In particular,
the bosonic and fermionic partner solutions can be written as the components of a
Dirac spinor of zero mass, see 3.1, whereas in 3.2 and 3.3 we do minimal extensions
of this known result. We end up the work with a short conclusion section.

2. SUPERSYMMETRIC (FACTORIZATION) METHODS

Combining Eqs. (1)–(3) and using the conformal time variableη defined by
dt= a(η)dη one gets the equation

a′′

a
+ (c− 1)

(
a′

a

)2

+ cκ = 0. (4)

wherec = 3
2γ − 1 The caseκ = 0 is directly integrable (Faraoni, 1999) and will

be skipped henceforth. One can immediately see that by means of the change of
functionu = a′

a the following Riccati equation is obtained:

u′ + cu2+ κc = 0. (5)

Employing now u = 1
c

w′κ
wκ

one gets the very simple second-order differential
equation:

w′′κ + κc2wκ = 0. (6)

Forκ = 1 the solution of the latter isw1 = W1 cos(cη + d), whered is an arbitrary
phase, implyinga1(η) = A1[cos(cη + d)]1/c, whereas forκ = −1 one getsw−1 =
W−1 sinh(cη) and thereforea−1(η) = A−1 [sinh(cη)]1/c, whereW+1 and A+1 are
amplitude parameters. These are the same solutions as in the textbook procedures.

The point now is that the Riccati solutionup = 1
c

w′
w mentioned above is only

the particular solution, i.e.,up,1 = − tan(cη) andup,−1 = coth(cη) for κ = ±1,
respectively. The particular Riccati solutions are closely related to the common
factorizations of the second-order linear differential, equations that are directly
related to the well-known Darboux isospectral transformations (Matveev and Salle,
1990). Indeed, Eq. (6) can be written

w′′ − c(−κc) w = 0 (7)
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and also in factorized form using Eq. (6) one gets (Dη = d
dη )

(Dη + cup)(Dη + cup) w = w′′ − c
(
u′p + cu2

p

)
w = 0. (8)

To fix the ideas, we shall call Eq. (8) the bosonic linear equation. On the other
hand, the supersymmetric partner (or fermionic) equation of Eq. (8) will be

(Dη + cup)(Dη + cup) wf = w′′f − c
(
u′p + cu2

p

)
wf

= w′′f − c · cκ,susywf = 0, (9)

which is related to the fermionic Riccati equation

−u′ + cu2− cκ,susy= 0. (10)

Thus, one can write

cκ,susy(η) = −u′p + cu2
p =

{
c(1+ 2 tan2 cη) if κ = 1

c(−1+ 2 coth2 cη) if κ = 1

for the supersymmetric partner adiabatic index. The solutionswf arewf = c
cos(cη+d)

andwf = c
sinh(cη) for κ = 1 andκ = −1, respectively.

Introducing the (quantum momentum) operatorPη = −i Dη, we can write
the fermionic equations as follows:

(−Pη − icup)(Pη − icup) wf = −P2
ηwf − c

(− iPηup + cu2
p

)
wf , (11)

whereas the bosonic case is

(Pη − icup)(−Pη − icup) wb = −P2
ηwb− c

(
iPηup + cu2

p

)
wb, (12)

There is a more general factorization of the bosonic equation (Mielnik, 1984; Rosu,
1999)

(Dη + cug)(Dη − cug) wg = w′′g − c(u′g+ cu2
g) wg = w′′g + κcc(η; λ) wg = 0,

(13)

which is given in terms of the general Riccati solutionug(η) of the fermionic
Riccati Eq. (10)

ug(η; λ) = up(η)− 1

c
Dη[ln( Iκ (η)+ λ)] = Dη

[
ln

(
wκ (η)

Iκ (η)+ λ
) 1

c

]
(14)

and yields the one-parameter family of effective adiabatic indicescκ (η; λ)

−κcκ (η; λ) = cu2
g(η; λ)+ dug(η; λ)

dη
= −κc− 2

c
D2
η[ln( Iκ (η)+ λ)]

= −κc− 4wκ (η)w′κ (η)

c(Iκ (η)+ λ)
+ 2w4

κ (η)

c(Iκ (η)+ λ)2
, (15)
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where Iκ (η) = ∫ η0 w2
κ (y) dy, if we think of a half-line problem for whichλ is a

positive integration constant thereby considered as a free parameter of the method.
All cκ (η; λ) have the same supersymmetric partner indexcκ susy(η) obtained

by deleting the appropriately normalized zero mode solutionwκ . They may be
considered as intermediates between the initial constant indexκc and the super-
symmetric partner indexcκ,susy(η). From Eq. (13) one can infer the new parametric
“zero mode” solutions of the universe for the family of barotropic indicescκ (η; λ)
as follows:

wg(η; λ) = wκ (η)

Iκ (η)+ λ =⇒ ag(η, λ) =
(

wκ (η)

Iκ (η)+ λ
) 1

c

. (16)

Before closing this section, we recall an interesting point. Since what we
have done here is to use the Darboux transformations at the level of cosmological
evolutionary equations (i.e., equations of motion of the scale factor of the FRW
cosmologies) a natural question is what is the effect of such transformations at
the level of any Lagrangian of the cosmological fluid mechanics. The answer to
this question has been already provided in the literature. Neto and Filho (1997)
have shown that in general the application of the Darboux transformations is
equivalent to the addition of a total time derivative of a purely imaginary function
to the Lagrangian and later, Samsonov (1998) using the coherent state approach
confirmed their result.

3. DIRAC-LIKE FORMALISM

The Dirac equation in the susy nonrelativistic formalism has been discussed
by Cooperet al. in 1988 (Cooperet al., 1988; Hugheset al., 1986; Nogami and
Toyama, 1998). They showed that the Dirac equation with a Lorentz scalar potential
is associated with a susy pair of Schroedinger Hamiltonians. This result has been
used later by many authors. In mathematical terms it is only a simple approach for
matrix differential equations. Here we present an application to barotropic PRW
cosmologies that we find not to be a trivial exercise except for the uncoupled
‘zero-mass’ case (see 3.1).

(3.1.) Let us introduce now the following two Pauli matricesα = −iσy =
− ( 0 −i

i 0 ) andβ = σx = ( 0 1
1 0) and write a cosmological Dirac equation

HFRW
D W = [iσy Pη + σx(icup)] W = 0, (17)

whereW = ( w1
w2

) is a two-component “zero-mass” spinor. This is equivalent to

the following decoupled equations:

−Pηw1+ icupw2 = 0 (18)
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+Pηw1+ icupw2 = 0. (19)

Solving these equations one getsw1 ∝ 1/ cos(cη) andw2 ∝ cos(cη) for κ = 1
cosmologies andw1 ∝ 1/ sinh(cη) andw2 ∝ sinh(cη) for κ = −1 cosmologies.
Thus, we obtain

W =
(

w1

w2

)
=
(

wf

wb

)
.

This shows that the matrix “zero-mass” Dirac equation is equivalent to the
two linear second-order differential equations for the bosonic and fermionic
cosmological components.

(3.2.) Consider now the following Dirac equation:

HFRW
D W = [iσy Pη + σx(icup + K )]W = KW, (20)

whereK is a positive real constant. In the left-hand side,K stands as a mass
parameter of the Dirac spinor, whereas on the right-hand side it corresponds
to the energy parameter, i.e.,E = K . Thus, we have a Dirac equation for a
spinor of massK at the fixed energyE = K . This equation can be written as
the following system of coupled equations:

−Pηw1+ (icup + K ) w1 = Kw2 (21)

Pηw2+ (icup + K ) w2 = Kw1. (22)

This system is equivalent to the following second-order equations for the two
spinor components, respectively:

−P2
ηwi − c

[
i (∓Pη − 2K ) up + cu2

p

]
wi = 0, (23)

where the subindexi = 1, 2.
The fermionic spinor component can be found directly as solutions of

D2
ηw
+
1 −

[
c2(1+ 2 tan2 cη)+ 2icK tancη] w+1 = 0 forκ = 1 (24)

and

D2
ηw
−
1 −

[
c2(−1+ 2 coth2 cη)− 2icK cothcη]w−1 = 0 forκ = −1, (25)

whereas the bosonic components are solutions of

D2
ηw
+
2 +

[
c2− 2icK tancη] w+2 = 0 forκ = 1 (26)

and

D2
ηw
−
2 +

[−c2+ 2icK cothcη] w−2 = 0 forκ = −1. (27)
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The solutions of the bosonic equations are expressed in terms of the Gauss
hypergeometric functions2F1 in the variablesy = eicη andy = ecη, respectively

w+2 = Ay−p
2F1

[
−1

2
(p+ iq);−1

2
(p− iq); 1− p;−y2

]
+ Byp

2F1

[
1

2
(p− iq);

1

2
(p+ iq), 1+ p;−y2

]
(28)

and

w−2 = C(−1)−
i
2 r y−ir

2F1

[
− i

2
(r + is),− i

2
(r − is), 1− ir ; y2

]
+ D(−1)

i
2 r yir

2F1

[
i

2
(r − s),− i

2
(r + s), 1+ ir ; y2

]
, (29)

respectively. The parameters are the following:p = (−1− 2K
c )

1
2 , q = (1−

2K
c )

1
2 , r = (−1− i 2K

c )
1
2 , s= (−1+ i 2K

c )
1
2 , whereasA, B, C, D are super-

position constants.
It is not necessary to try to find the general fermionic solutions through the

analysis of their differential equations (24) and (25) because they are related in
a known way to the bosonic solutions (Boyaet al., 1998). The general fermionic
solutions can be obtained easily if one argues that the particular fermionic zero
mode is the inverse of a particular bosonic zero mode and constructing the other
independent zero mode solution as in textbooks. Thus

w±1 =
1+ k

∫ y [w±2 ]2dz

w±2
, (30)

wherek is an arbitrary constant.
(3.3.) The most general case in this scheme is to consider the following matrix

Dirac-like equation:[
i

(
0 −i
i 0

)
Pη +

(
0 1
1 0

)(
icup + K1 0

0 icug+ K2

)](
w1

w2

)
=
(

K1 0
0 K2

)(
w1

w2

)
. (31)

Proceeding as in 3.2 one finds the coupled system of first-order differential
equations

[ Pη + icug+ K2] w2 = K1w1 (32)

[−Pη + icup + K1] w1 = K2w2 (33)
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and the equivalent second-order differential equations

−Pη
2wi + [ic(up − ug)+ (K1− K2)] Pηwi

+ [ic(±Pηui + K1ug+ k2up)− c2upug] wi = 0, (34)

where the subindexi = 1, 2, andu1 andu2 correspond toup andug, respectively.
In the Dη notation this equation reads

D2
ηwi + [c1upg− i1K )] Dηwi

+ [c(±Dηui + (i K1ug+ K2up))− c2upug]wi = 0. (35)

Under the gauge transformation

wi = zi exp

(
−1

2

∫ η

[c1upg− i1K ] dτ

)
= zi (η)

e
1
2 iη1K

(Iκ + λ)
1
2

(36)

one gets

−P2
η zi + Qi (η)zi = 0, D2

ηzi + Qi (η) zi = 0, (37)

where

Qi (η) = [c(±Dηui + (i K1ug+ K2up))− c2upug]

−1

2
Dη[c1upg] − 1

4
[c1upg− i1K ]2 (38)

for i = 1, 2 respectively.Qi are complicated effective barotropic indices and
we were not able to find analytical solutions of Eq. (37).

The corresponding Dirac spinor is of the following form

W(λ, K1, K2) =
(

z1(K1)
z2(λ, K2)

)
=
(

wf (K1)
wg(λ, K2)

)
,

wherewg(λ, K2) is given by Eq. (16) forK1 = K2 = 0. For λ→∞ one ob-
tainsW(λ, 0, 0)→ W. In addition,ug→ up and forK1 = K2 = K one gets the
particular case in 3.2.

4. CONCLUSIONS

We come now to the interpretation of the mathematical results that we dis-
played in the previous sections. An examination of the formulas (23–26) and (37)
show that the parametersK introduce an imaginary part in the effective adiabatic
index of the cosmological fluid. Thus, the supersymmetric techniques presented
in this research letter are a particular way to consider dissipation and instabilities
in the ideal case of barotropic FRW cosmologies. More general scale factors of
barotropic FRW universes incorporating a well-defined type of dissipation can be
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obtained from the “zero-modes”w±1,2 by means of the relationa ∼ w1/c(η;K ). The
indicesc(η; K ) are redefined (effective) adiabatic indices that can be inferred from
the formulas (23–26) and (37), respectively.
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